Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Acta Pharmaceutica Sinica ; (12): 1727-1738, 2021.
Article in Chinese | WPRIM | ID: wpr-881568

ABSTRACT

In the research and development of new drugs, it is very important to investigate the in vitro metabolism of candidate drugs. Traditional models such as liver microsomes have many limitations, while the in vitro model of recombinant human drug metabolizing enzymes is considered as an important and useful approach because of its convenient access, stable activity and low cost. In this study, six major human UDP-glucuronosyltransferases (UGTs) genes (UGT1A1, 1A3, 1A4, 1A6, 1A9 and 2B7) were cloned from human liver cDNA and heterologously expressed in Saccharomyces cerevisiae and baculovirus-infected insect cell. UGT1A1, 1A3, 1A6 and 1A9 were successfully expressed in yeast and showed glucuronidation activity against a variety of different structural types of substrates, but their activities were low. All six UGTs were successfully expressed and exhibited significantly improved glucuronidation activity when Trichopolusia ni cells BTI-TN5B1-4 (High Five) were used as the host. The recombinant human UGTs expressed in insect cells can catalyze the glucuronidation of their specific substrates, and the glucuronidation products were synthesized at milligram-scale with yields of 13%-66% for the first time, of which the structures were identified via MS, 1H NMR, and 13C NMR spectroscopic analysis. Above all, the recombinant human UGTs yeast and insect cell expression systems constructed in this study can be used for in vitro metabolism evaluation in the early stage of new drugs research and development, and also provide a new tool for the synthesis of glucuronide metabolites.

2.
China Journal of Chinese Materia Medica ; (24): 2349-2351, 2015.
Article in Chinese | WPRIM | ID: wpr-337931

ABSTRACT

To investigate the secondary metabolites of endophytic fungi Pericinia sp. F-31. Column chromatography on silica gel, Sephadex LH-20 and semi-preparative HPLC were used to separate and purify the compounds. Two compounds were isolated from the fermentation broth of Periconia sp. Their structures were identified as 5-(1-hydroxyhexyl) -6-methyl-2H-pyran-2-one (1) and 2-(3-hydroxy-4-methylphenyl) -propanoic acid (2). Compound 1 was a new lactone compound, compound 2 was new natural product, and the NMR data of compound 2 was reported for the first time.


Subject(s)
Annona , Microbiology , Ascomycota , Chemistry , Genetics , Metabolism , Drugs, Chinese Herbal , Chemistry , Metabolism , Endophytes , Chemistry , Genetics , Metabolism , Lactones , Chemistry , Metabolism , Mass Spectrometry , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL